Stress-induced adaptation in marine colonial tunicates

Alison M. Gardell, Ph.D. University of Washington Tacoma

NSF-BSF Collaborative Research

• University of California Davis

- Israel Oceanographic and Limnological Research Institute
- University of Washington Tacoma

Marine Invertebrates of Puget Sound

WA Department of Ecology

Botryllids in Puget Sound Marinas

Leclair et al. 2007

Botryllid ascidians

- Benthic, sessile, filterfeeders
- Colonial → many individuals embedded in a common tunic
- Reproduces sexually and asexually
- Interesting biology!

Botrylloides violaceus

Botryllus schlosseri

Botryllids as candidate species for evaluating gene x environment interactions

Smithsonian Environmental Research Center

Salish Sea predicted to warm by ~1.5°C by 2095

• Native species are less resilient to changing temperatures than invasives (Stachowicz et al., 2002)

• Warming correlated with change in species distributions (Sagarin et al., 1999)

Khangaonkar et al. 2019

Does temperature alter botryllid physiology?

Olivia Wing, NSF REU

Blastogenesis

STAGE A

STAGE B

STAGE C

STAGE D

Qarri et al. 2020

Larvae settlement on glass microscope slides

Colonies were cultured at 3 temperatures (n = 11) over 10 days

Temperature Treatment Tanks

Zooid and bud numbers are good proxies for colony health and growth

Qualitative matrix of colony health

Category	Healthy (+2)	Unhealthy (+1)	Dead/Dying (+0)
Tunic	Transparent, firm to the touch (in larger colonies)	Translucent, less firm, seeming to detach from the colony, parts have been dissolved/eaten away	Opaque (cannot see zooid detail), gelatinous, easy to peel off/away
Circulatory System	Constant visible blood flow in siphon, brachial basket, and external vasculature	Very little flow, really localized, hard to find	No discernible flow or heartbeat
Ampullae	Bottle-shaped, visible new growth, distinct from each other, close to the edge of the tunic	Close together, deflated, retracted from the edge of the tunic	Thin, highly pigmented
Siphons	Highly responsive to touch, visible contractions, circulation, translucent	Some siphons seem unresponsive, highly pigmented, small	No visible contractions or water circulation
Overall	Brightly colored, distinct siphons	Thinner/collapsed siphons, no visible cloacal openings, "the zoo"	Grayish, smell of decay, loss/lack of original pigment, ciliates and other protozoans, disintegration

Healthy zooid number increases at high temperature

Temperature

Regressing zooids is not affected by temperature

Temperature

Production of primary buds is lower in mid-temperature

Temperature

Production of secondary buds is not affected by temperature

Colonies in high temperatures exhibited lower heart rate

Does UV radiation alter morphology and gene expression?

UV radiation generates abnormal phenotypes and alters blastogenesis

UV stress alters gene expression profiles

Qarri et al. 2020

Conclusions & Future Work

- Blastogenesis in botryllids is positively affected by temperature stress and negatively impacted by UV radiation.
- Colonies demonstrate high level of plasticity in gene expression and morphological phenotypes in response to environmental stressors.
- Future comparative study with populations across different latitudes and native colonial ascidian species.

Acknowledgements

This research was supported by grants from the National Science Foundation (MCB-2127517; DBI-2149705) and a UW Friday Harbor Laboratories New Faculty Research Fellowship.

Research Collaborators: Baruch Rinkevich Dietmar Kültz Olivia Wing Andy Qarri Amalia Rosner Claudette Rabinowitz

Questions?