

Nutrient pollution impact reduction assessment - Hypothetical euphotic zone avoidance/bypass considerations

TARANG KHANGAONKAR^{1,2} SU KYONG YUN¹

¹Pacific Northwest National Laboratory ²University of Washington, Tacoma

South Sound Science Symposium

Shelton, Washington October 16, 2024

What is nutrient pollution?

(Nutrient loads > natural)

 $(DIN - NO_3 + NH_4)$

Impact?

- Excessive primary production
- Eutrophic conditions
- Water quality impairment
 - Increase in exposure to hypoxic condition
 - Fish kills ... etc.

Need for regionwide management of nutrient pollution and hypoxia

- Development of a comprehensive predictive computational tool for the Salish Sea Ecosystem
 - Tidal hydrodynamics
 - Biogeochemistry
- Salish Sea Model (SSM)

(2010 – present)

- U.S. EPA
- Wa. Dept. Ecology

Y2014 Baseline

Khangaonkar T, A Nugraha, W Xu, W Long, L Bianucci, A Ahmed, T Mohamedali, and G Pelletier. 2018. Analysis of Hypoxia and Sensitivity to Nutrient Pollution in Salish Sea. *Journal of Geophysical Research – Oceans*, 123(7): 4735-4761. doi: 10.1029/2017JC013650

Y2014 Without Land-base Loads

Potential opportunity to reduce the nutrient pollution impact

Estuarine outflow depth > Euphotic zone depth

Passive export of anthropogenic nutrients out of Puget Sound

Reduction in total primary production

- PAR measurements from 7 stations in Puget Sound (2002 to 2003) by Washington State Department of Ecology (Ecology) and King County
- Chlorophyl data from Ecology's monthly marine monitoring program
- Tidally averaged current profile from ADCP data (NOAA-COOPs 2015)

Characterization of nutrient loads to Puget Sound

99 WWTP outfalls, 161 River inflows

(a) Average DIN Loading [kg/s] of Salish Sea (b) Average DIN Loading [kg/s] of Point Source (US)

The loading value % are presented relative to the total average DIN loading (1.44kg/s) to the Salish Sea, including Canadian and U.S. regions

Circulation cells in Puget Sound separated by sills (Khangaonkar et al., 2017. Ocean Modeling)

6

Sensitivity tests using SSM

- (a) River based nutrient loads
- (b) Wastewater based nutrient loads
- (c) Outfall location
- Su Kyong Yun

Nutrient reduction scenarios and outfall relocation scenarios

Nutrient reduction scenarios

(2) Reference

Ant. River Loads = 0
Point Source Loads = 0

(3) pnt_to_ref

Point Source Loads = 0

(4) riv_to_ref

Ant. River Loads = 0

Outfall relocation scenarios

(5) pnt_to_bot

Point Source Loads = Bottom

(6) pnt_to_surf

Point Source Loads = Surface

(7) 99%_pnt_reloc

99% of point source loads=Bottom

Direct impact of nutrient reduction on DO improvement

Nutrient reduction scenarios

(2) Reference

Ant. River Loads = 0
Point Source Loads = 0

(3) pnt_to_ref

Point Source Loads = 0

(4) riv_to_ref

Ant. River Loads = 0

Hypoxia

Dissolved Oxygen < 2mg/L

Impairment

Dissolved Oxygen < 5mg/L

Varying Impacts of Outfall Relocation Scenarios on DO Improvement

Regional Variability in Response to Outfall Relocation

Regional Variability in Response to Outfall Relocation: Percent Change of GPP

Outfall Relocation Impacts on South Sound

Effects of Outfall Relocation on Exchange Flow Dynamics in Puget Sound

Relocation of outfalls (99%_pnt_reloc) 22% increase in freshwater released to the bottom

Affecting reducing the salinity gradients

Reducing the strength of exchange flow and circulation in Puget Sound

4% reduction in the strength of exchange flow

Average YR19-20	Admiralty Inlet (outflow)			
Scenario	Volume Flux, m3/s	Δ Volume Flux %	DIN Flux, kg/s	Δ DIN Flux %
(1) Existing	15,757		-5.24	
(7) 99%_pnt_reloc	15,196	-4%	-5.04	-4%
Average YR19-20	Deception Pass (outflow)			
Scenario	Volume Flux, m3/s	Δ Volume Flux %	DIN Flux, kg/s	Δ DIN Flux %
(1) Existing	1,561.4		0.543	
(7) 99%_pnt_reloc	1,546.7	-0.9%	0.538	-0.9%

Conclusion

Questions

Su KyongYun

sukyong.yun@pnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

Figure 11 (A) Exchange flow (m³/s) at the entrance to Puget Sound at the Admiralty Inlet north boundary, and DIN concentration (mg/L) profile, and **(B)** exchange flow (m³/s) at the Deception Pass connection of Puget Sound to the Strait of Juan de Fuca and DIN concentration (mg/L) profile.

BUSINESS SENSITIVE 17

Nutrient load reduction scenarios

BUSINESS SENSITIVE

18

The Salish Sea model – hydrodynamics and biogeochemistry (2013-2020)

Salish Sea Model FVCOM (HYD) FVCOM-ICM (WQM)

	Average 2013-2020 RMSE
T [°C]	0.62
S [ppt]	0.95
DO [mg/L]	0.95
рН	0.26

BUSINESS SENSITIVE

Hypoxia

Dissolved Oxygen < 2mg/L

Impairment

Dissolved Oxygen < 5mg/L

BUSINESS SENSITIVE 20