TRI LAKES PROJECT: EVALUATING SEPTIC EFFECTS ON GROUNDWATER

USING MODELING AND SAMPLING TO ASSESS THE IMPACTS OF SEPTIC SYSTEMS TO WATER QUALITY IN THE LONG-PATTISON-HICKS LAKES AREA OF NORTHERN THURSTON COUNTY

> Kevin Hansen, LHG, Thurston County Hydrogeologist kevin.hansen@co.thurston.wa.us

CAN WE DETERMINE IF SEPTIC SYSTEMS ARE THE <u>PRIMARY</u> SOURCE?

- KEY PROJECT QUESTION
- LOTS OF SEPTIC SYSTEMS....
- ...BUT OTHER SOURCES ARE KNOWN TO CONTRIBUTE:
 - LAWN/YARD CARE PRODUCTS
 - ANIMAL WASTE
 - AGRICULTURE
 - STORMWATER

DISTRIBUTION OF HOME CONSTRUCTION AGE 10,541 HOMES WITH SEPTIC SYSTEMS

COVID PROJECT #1 UPDATE SEPTIC LOADINGS

- OCCUPANCY DATA ADDED ~9,000 PRESUMED SEPTIC SYSTEMS
- AGGREGATE SEPTIC LOADING TO MODFLOW MODEL CELLS
- WATER FLUX: SWB RECHARGE + SEPTIC DISCHARGE BASED ON ASSESSOR'S BEDROOM COUNT

CALCULATED NITRATE LOADING USING RECHARGE+WASTE WATER ADDED TO THE MODFLOW GRID (200X200)

GROUNDWATER FLOW MODEL

- BOUNDARY CONDITIONS ALLOW WATER TO <u>ENTER</u> THE MODEL
 - RECHARGE, RAINFALL, INJECTION WELLS
 - STREAMS, LAKES
 - MODEL EDGES
- BOUNDARY CONDITIONS ALLOW WATER TO <u>LEAVE</u> THE MODEL
 - WELLS
 - OCEAN
 - RIVERS, LAKES
 - EVAPORATION
 - PLANT TRANSPIRATION
 - MODEL EDGES

MODFLOW MODEL INTEGRATES

- ~4.08MILLION ACTIVE CELLS, 200X200 FEET, 6 LAYERS
- 2011 LIDAR-REFERENCED TO NAVD88 DATUM THROUGHOUT
- +23,000 WELLS AND +50,000 SEPTICS
- +900 MILES OF SFR STREAMS
- LAK AT 125 LARGER LAKES, DRN AT +300 LAKES
- CURRENT WETLANDS, HYDRIC SOILS AND HIGH GROUNDWATER
- AQUIFER PROPERTIES FROM MANY PRIOR STUDIES
- SOLVER: NEWTON-RAPHSON METHOD (NWT) SOLVER
- PEST_HP: CALIBRATED USING +20,000 MODEL RUNS USING AUTOMATION OF PEST_HP

WITH A RUNNING MODEL, WE APPROACHED WA DOH

- SEPTIC DENSITIES ARE VERY HIGH IN THE "TRI LAKES" AREA OF NORTHERN THURSTON COUNTY
- UP TO 6 SYSTEMS PER ACRE WERE ALLOWED UNTIL THE SANITARY CODE CHANGED IN THE 1990S
- MODELING SERVED AS GUIDANCE FOR SAMPLING
- CALIBRATION OF MODEL DATA WAS BENEFICIAL
- EARLY WARNING FOR SMALLER GROUP B WELLS NOT FREQUENTLY SAMPLED (LESS THAN FIFTEEN CONNECTIONS)

0.19 cfs 0.38 cfs 0.61 cfs g

.4 miles

пП

FOCUS AREA: TANGLEWILDE

OLYMPIA

- WASTEWATER FROM SEPTICS SPREADS NATURALLY IN GROUNDWATER
- SEEPAGE MAY EXTEND BEYOND . PARCEL BOUNDARIES
- MODELS CALCULATE POTENTIAL EXTENT AND TIMING OF MOVEMENT

ABOUT 10% OF WELLS COULD BE SAMPLED

Class of Well	Count of Pumping Wells in Study Area by Well Class	Wells Sampled for this Project
Public Supply Group A Systems	57	12
Public Supply Group B Systems	39	18
Domestic	421	20
Monitoring	-	8
Totals	554	58

0

...AFTER MONTHS OF WORK

- MAILED LETTERS
- MAILED POSTCARDS
- CALLS

• DOOR KNOCKING - THE BEST WAY TO GET "YES"

WHAT DID WE FIND? - PART 1 NITRATE...

COMPARISON OF DETECTED NITRATE TO REGULATORY CRITERIA

	Group A	Group B	Domestic	Monitoring	Total
Exceeds MCL				1	1
Exceeds TRIGGER		1	4	4	9
Exceeds CAL		1	1	1	3
Exceeds EWL	6	3	6		15
Below BACKG	6	13	10	2	31

MCL:10 mg/LTRIGGER:Federal and State trigger level for increased monitoring: 5 mg/LCAL:County Critical Action Level: 4 - 9.9 mg/L (only results 4 - <5 mg/L counted for this report)EWL:County Early Warning Level: 2 - 3.9 mg/LBACKG:County Background: < 2.0 mg/L

MODEL COMPARISON WITH ALL AVAILABLE NITRATE DATA

B South

B' North

SHOW ANIMATION

 \bigcirc

 \bigcirc

WHY DID SAMPLES HAVE 40% MORE 'NITRATE' TRACER THAN MODELED?

- 1. RECHARGE:
 - HIGHER-RECHARGE, HIGHER-K, FAST SOLUTE MOVEMENT BIDLAKE & PAYNE STEADY-STATE RECHARGE?
 VS.
 - LOWER-RECHARGE, LOWER-K, SLOWER SOLUTE MOVEMENT SWB TRANSIENT RECHARGE?
- 2. SEPTIC WASTEWATER COULD HAVE MORE NITRATE THAN MODELED DEFAULT 'SOURCES'? MY OPINION: LESS LIKELY BECAUSE WE HAVE GOOD ENFORCEMENT + EDUCATION IN THIS WATERSHED
- 3. OTHER SOURCES ARE CONTRIBUTING NITRATE:
 - LAWNS/YARDS?
 - ANIMAL WASTE?
 - AGRICULTURE?
 - STORMWATER?

WHAT DID WE FIND? – PART 2 CHEMICALS OF EMERGING CONCERN (CEC)

- ADDITIONAL ANALYSIS OF A SUBSET OF TEN WELLS
- LABORATORY: CENTER FOR URBAN WATERS, UW TACOMA
- NEW METHOD NOT "CONCENTRATIONS" RELATIVE INSTRUMENT RESPONSES ONLY
- ANALYSIS FOR 64 CEC SUBSTANCES:
 - 6 FOOD ADDITIVES
 - 12 COMMERCIAL CHEMICALS
 - 25 INDUSTRIAL CHEMICALS
 - 9 PESTICIDES AND HERBICIDES
 - 12 PHARMACEUTICALS

RAW RESULTS RED/ORANGE BARS ARE TENTATIVE DETECTIONS

0

Industrial Chemicals Tentatively Detected

WHAT DID WE FIND? – PART 3 SOME VERY COMMON TENTATIVE DETECTIONS

- SUCRALOSE (FOOD ADDITIVE)
- CAFFEINE (FOOD ADDITIVE)
- 2,6-DICHLORBENZAMIDE (BAM) ("CASORON" HERBICIDE BREAKDOWN PRODUCT)
- SULFAMETHOXAZOLE (ANTIBIOTIC)
- OTHER COMPOUNDS ALSO TENTATIVELY DETECTED
 - TARGETED COMPOUNDS WERE CHOSEN FROM CANDIDATES DISCOVERED DURING INITIAL SCREENING
 - ESTIMATED QUANTIFICATION BASED ON CALIBRATION CURVES, BUT NOT A COMPLETE QUANTITATIVE METHOD

Sucralose is a widely-used persistent artificial sweetener that is a commonly used indicator for wastewater or septic tank infiltration of groundwater (Robertson et al., 2016)

Courtesy: Andy James and Dave Wark, Center for Urban Waters, UW Tacoma

2,6-Dichlorbenzamide (BAM) is the primary metabolite of Dichlobenil, an herbicide used to control weeds and grasses sold under various brand names including Casoron and Noxall.

BAM is known to be a persistent groundwater contaminant (Ellegaard-Jensen et al., 2017).

TENTATIVELY DETECTED CONCENTRATIONS NANOGRAMS PER LITER (NG/L)

Compound	43500_27_	43500_20_	WEL30161	WEL00023	WEL49269	WEL49269	WEL51591	05238_01_We ll_1	WEL49756	WEL49694	WEL50058
Caffeine	5			800							
Dichlorbenzamide (BAM)	700	500	150	900				150	40	650	1000
Sucralose	40	55	75	200	5	5	30	5		40	250
Sulfamethoxazole	<1	<1		3				<1		<1	3

Concentrations are semi-quantitative estimates, given in ng/L with a potential +/-50% variance.

SUMMARY OF GROUNDWATER SAMPLING RESULTS

- 47% OF SAMPLES EXCEEDED THE COUNTY 'EARLY WARNING' LEVEL FOR NITRATE
- 15% OF SAMPLES EXCEEDED THE WA DOH TRIGGER CRITERIA OF 5 MG/L FOR NITRATE
- NUMEROUS CECS WERE DETECTED IN GROUNDWATER SAMPLES, SOME IN SEVERAL WELLS:
 - **PESTICIDES/HERBICIDES**
 - INDUSTRIAL CHEMICALS
 - COMMERCIAL CHEMICALS
 - PHARMACEUTICALS
 - FOOD ADDITIVES

CEC DETECTIONS IN SALISH SEA WATER ARE SIMILAR TO THOSE DETECTED IN TRI LAKES GROUNDWATER

ASK AGAIN: WHY DID SAMPLES HAVE 40% MORE NITRATE THAN MODELED?

MORE LIKELY REASONS:

- 1. SEPTIC WASTEWATER COULD BE MORE CONTAMINATED THAN MODELED 'SOURCES' (NOTE: LESS LIKELY B/C GOOD ENFORCEMENT + EDUCATION IN WOODLAND CREEK WATERSHED)
- 2. ADDITIONAL SOURCES:
 - LAWNS/YARDS...
 - STORMWATER...
 - ANIMAL WASTE?
 - AGRICULTURE?